
Mathematics 1c, Spring 2008. Practice Midterm Examination

J. Marsden

Print Your Name:
Your Section:

• This exam has five questions.

• This exam should take about 3.5 to 4 hours to complete. The real
midterm will be constructed so that students who are well versed in
the material will require 3 hours. That exam will be a 3 hour exam.
There is no credit for overtime work.

• No aids (including notes, books, calculators etc.) are permitted.

• The real exam must be turned in by noon on Wednesday, May 7.

• All 5 questions should be answered on this exam, using the backs of
the sheets or appended pages if necessary.

• Show all your work and justify all claims using plain and proper English.

• Each question is worth 20 points.

• Good Luck !!

1

2

3

4

5

/100

1



1. Consider the matrix

A =
1

2

[
1 −3
−3 1

]
(a) Is A diagonalizable?

(b) Is A invertible?

(c) Find the eigenvalues and eigenvectors of A

(d) Compute (A−1)6

Solution.

(a) Yes, because A is symmetric

(b) Yes, because its determinant is −2, which is not zero

(c) The characteristic polynomial is

p(x) = det

[
x− 1

2
3
2

3
2

x− 1
2

]
=

(
x− 1

2

)2

− 9

4

whose roots are 2,−1. Thus, the eigenvalues are 2,−1. Since A is
symmetric, we know that the diagonalizing matrix can be chosen
to be orthogonal. We verify this by computing the associated
normalized eigenvectors to be (1,−1)/

√
2 and (1, 1)/

√
2.

(d) Let Q be the diagonalizing matrix. It is given explicitly by

Q =

[
1√
2

1√
2

− 1√
2

1√
2

]
Thus,

A = QDQ−1

where D = diag(2,−1). Then

(A−1)6 =
(
(QDQ−1)−1

)6
=
(
QD−1Q−1

)6
= Q(D−1)6Q−1 = Q

[
1
26 0
0 1

]
Q−1 = Q

[
1
26 0
0 1

]
QT

Multipying this out, we get

(A−1)6 =

[
1
2

+ 1
27

1
2
− 1

27

1
2
− 1

27
1
2

+ 1
27

]
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There is no need to work this out numerically, but if you do, you get

(A−1)6 =

[
65
128

63
128

63
128

65
128

]

2. Let A be a 3× 3 orthogonal matrix.

(a) Show that the determinant of A is ±1.

(b) Let λ be a real eigenvalue of A. Show that λ = ±1

(c) Suppose that A is orthogonal and detA = 1. Show that at least
one eigenvalue of A equals 1. Must one of them equal −1 as well?

(d) Give an example of a 3 × 3 orthogonal matrix that is not diago-
nalizable (as a real matrix).

Solution.

(a) Since AAT = Identity, taking determinants and using the fact that
detA = detAT and that det Identity = 1, we see that (detA)2 = 1
and so detA = ±1.

(b) If Av = λv then taking the inner product of both sides with
Av = λv, and using the fact that 〈Av,Av〉 =

〈
ATAv, v

〉
= ‖v‖2,

we get ‖v‖2 = λ2‖v‖2 and so λ2 = 1. Because λ is real, we get
λ = ±1.

(c) Since any cubic equation has at least one real root, we see that
there is at least one root of the characteristic polynomial that is
±1. If it equals 1 we are done. Suppose, alternatively, that it
equals −1. Since detA = 1 and the determinant is the product of
the eigenvalues, the product of the other two eigenvalues must be
−1. These other two eigenvalues are either real or have the form λ
and λ. But they cannot have the form λ and λ since the product
of these two complex numbers is positive. Thus, these two other
eigenvalues must be real. Thus, they are either plus or minus 1.
But since their product is −1, at least one eigenvalue is one.

The identity matrix shows that there need not be an eigenvalue
equal to −1.
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(d) There are many answers for this; a simple one is a rotation through
π/2 around the z-axis, namely0 −1 0

1 0 0
0 0 1


3. Do each of the following calculations

(a) Find the tangent vector to the curve

σ(t) = e1−ti− t2j + sin(πt/2)k

at the point t = 1.

(b) If a particle following the curve in (a) flies off on a tangent at
t = 1, where is it at t = 2?

(c) Find the gradient of the function

f(x, y, z) = yz sin(πx)− xyz

at the point (1, 1, 2).

(d) Find the equation of the tangent plane to the graph of

z = 3y2 − x3 + 2

at the point on the graph with x = 1 and y = −1.

(e) Calculate the gradient of the function f : R3 → R given by
f(x, y, z) = −3r−2, where r =

√
x2 + y2 + z2. Verify that the

gradient is orthogonal to the level sets of f .

Solution.

(a) The tangent vector to the curve is obtained by differentiating the
curve:

σ′(t) = −e1−ti− 2tj +
π

2
cos
(π

2
t
)

k.

Evaluating this at t = 1, we get the required tangent vector
σ′(1) = −i− 2j.
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(b) The equation for the particle path following the tangent line is

`(t) = (i− j + k) + (t− 1)(−i− 2j).

Note that this line passes through the point σ(1) at t = 1 and has
the direction σ′(1). Setting t = 2, we get the desired position to
be `(2) = (0,−3, 1).

(c) The gradient at a general point is:

∇f(x, y, z) = (πyz cos(πz)− yz)i + (z sin(πx)− xz)j+

+ (y sin(πx)− xy)k

Evaluating this at the required point, we get

∇f(1, 1, 2) = −2(π + 1)i− 2j− k

(d) Denote

f(x, y) = 3y2 − x3 + 2; and (x0, y0) = (1, −1)

We have

f(x0, y0) = 4

fx (x0, y0) = −3x2
0 = −3

fy (x0, y0) = 6y0 = −6

The equation of the tangent plane to the graph of z = f(x, y) is

z = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).

In our case, this becomes z = 4− 3(x− 1)− 6(y + 1) that is

z = −3x− 6y + 1.

(e) The function is

f(x, y, z) =
−3

x2 + y2 + z2

and so the gradient is

∇f(x, y, z) = fx(x, y, z)i + fy(x, y, z)j + fz(x, y, z)k =

=
6x

(x2 + y2 + z2)2
i +

6y

x2 + y2 + z2)2
j +

6z

(x2 + y2 + z2)2
k

=
6

(x2 + y2 + z2)2
(xi + yj + zk)

=
6r

r4
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4. Let f(x, y, z) be a given (smooth) function defined on the whole of R3.

(a) Let σ(t) = t i−et j−t3 k. Write the chain rule for f ◦σ in gradient
and component notation.

(b) If the gradient ∇f has a positive z component in the half space
z ≥ 0, must f(1, 2, 1) be larger than f(1, 2, 0)? Must it be larger
than f(0,−1, 0)? Prove or find a counter example.

(c) If f(x, y, z) = x2−y2 +z4, find the derivative of f in the direction
of the vector i− j at the point (1,−1, 1).

(d) In what direction is the function in (c) increasing the fastest at
(1,−1, 1)?

(e) In what directions is the function in (c) increasing at half its max-
imum rate at the point (1,−1, 1)?

Solution.

(a) By the chain rule,

d

dt
f ◦ σ(t) = ∇f(σ(t)) · σ̇(t) = ∇f(σ(t)) ·

(
i− etj− 3t2k

)
=
∂f

∂x
i− et∂f

∂y
− 3t2

∂f

∂z
k

(b) The answer to the first part is yes; in fact, the rate of change of
f along the vertical line from (1, 2, 0) to (1, 2, 1), namely c(t) =
(1, 2, t) is ∇f(1, 2, t) · k, where 0 ≤ t ≤ 1, which is positive by
assumption.

The answer to the second part is no; one possible counter example
is (there are lots of counter examples) f(x, y, z) = −2x+ z. Then
∇f = (−2, 0, 1) but f(1, 2, 1) = −1 < 0 = f(0,−1, 0).

(c) Let n = 1√
2
(1,−1, 0) then the derivative of f in the direction n is

given by

∇f · n = (2x,−2y, 4z3) · 1√
2

(1,−1, 0) =
2√
2

(x+ y),

which equals zero at the point (1,−1, 1).
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(d) The function is increasing the fastest in the direction of the gra-
dient, namely in the direction ∇f(1,−1, 1) = (2, 2, 4). (You can
normalize this vector if you like.)

(e) Let n be such a direction. Then the given condition reads

∇f(1,−1, 1) · n =
1

2
‖∇f(1,−1, 1)‖

since the direction of maximum rate of change is the direction of
the gradient and the rate of change in that direction is

∇f(1,−1, 1) · ∇f(1,−1, 1)

‖∇f(1,−1, 1)‖
= ‖∇f(1,−1, 1)‖.

This means that cos θ = 1
2

and so θ = 60◦, where θ is the angle
between ∇f(1,−1, 1) = (2, 2, 4) and n. The collection of such
vectors n form a cone around the axis ∇f(1,−1, 1) = (2, 2, 4).

5. This problem has three main parts.

(a) Consider the two functions defined on R3 by

U = x2 − y2 + sin z and V = xy cos(xz).

i. Suppose that (x, y, z) are functions of new variables (u, v).
Write out the chain rule for this situation, giving the deriva-
tives of U and V as functions of (u, v) in matrix notation.

ii. Consider the specific situation in which x = u− v, y = u+ v
and z = u. Calculate the derivative matrix of the resulting
map of (u, v) to (U, V ) evaluated at u = 1, v = 0.

(b) Find the extreme points of f(x, y, z) = x + y + z subject to the
two constraints x2 + y2 = 5 and y + 2z = 3.

(c) Let f(x, y) = x2 + 3xy + y2 + 16. Calculate the eigenvalues of
the matrix of second partial derivatives of f at the origin. Using
this information alone, determine if the origin is a maximum, a
minimum or a saddle point.
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Solution.

(a) Let F denote the mapping (x, y, z) 7→ (U, V ) defined by these
equations and let G denote the mapping (u, v) 7→ (x, y, z) (for (i)
it is general, and will be made specific in (ii)).

i. The composition F ◦ G is the mapping (u, v) 7→ (U, V ) ob-
tained by replacing (x, y, z) by their expressions in terms of
(u, v). The chain rule then says that

D(F ◦G)(u, v) = DF (x, y, z) ·DG(u, v)

In matrix form, this equation reads as follows: follows:

[
∂U
∂u

∂U
∂v

∂V
∂u

∂V
∂v

]
=

[∂U
∂x

∂U
∂y

∂U
∂z

∂V
∂x

∂V
∂y

∂V
∂z

]
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∂z
∂u

∂z
∂v



=

[
2x −2y cos z

y cos(xz)− xyz sin(xz) x cos(xz) −x2y sin(xz)

]
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∂z
∂u

∂z
∂v


ii. When u = 1, v = 0, we have x = u − v = 1, y = u + v = 1

and z = u = 1. Thus, the first matrix on the right hand side
of the preceding equation becomes

∂(U, V )

∂(x, y, z)

∣∣
(1,1,1)

=

[
2 −2 cos 1

cos 1− sin 1 cos 1 − sin 1

]
.

Similarly, the second matrix on the right hand side is1 −1
1 1
1 0

 .
Multipying these matrices we get[

∂U
∂u

∂U
∂v

∂V
∂u

∂V
∂v

]∣∣∣∣∣
(u,v)=(1,0)

=

[
cos 1 −4

2 cos 1− 2 sin 1 sin 1

]
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(b) Write the two constraints as follows:

g1(x, y, z) = x2 + y2 − 5 = 0

and
g2(x, y, z) = y + 2z − 3 = 0.

The set of points satisfying both these constraints is (as was ex-
plained in lecture) a curve in R3. Thus, the maximum and mini-
mum points pmust be points where∇f(p) = λ1∇g1(p)+λ2∇g2(p).
Thus we must find x, y, z, λ1, and λ2 such that

∇f(x, y, z) = λ1∇g1(x, y, z) + λ2∇g2(x, y, z)

and

g1(x, y, z) = 0,

g2(x, y, z) = 0.

Computing the gradients and equating components, we get

1 = λ1 · 2x+ λ2 · 0,
1 = λ1 · 2y + λ2 · 1,
1 = λ1 · 0 + λ2 · 2,

and
x2 + y2 = 5,

y + 2z = 3.

These are five equations for x, y, z, λ1, and λ2. From the third,
λ2 = 1/2, and so 2xλ1 = 1, 2yλ1 = 1/2. Since the first equation
implies λ1 6= 0, we have x = 2y. Thus, from x2 + y2 = 5, we get
y = ±1 and from y + 2z = 3 we get z = 1, 2. Hence the desired
extrema are (2, 1, 1) and (−2,−1, 2). By inspection, (2, 1, 1) gives
a maximum, and (−2,−1, 2) a minimum.

(c) Note that the origin is a critical point of f . The matrix of second
derivatives is given by

S =

 ∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂y

∂2f
∂y2

 =

[
2 3
3 2

]
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The eigenvalues of this matrix are the roots of the characteristic
polynomial, namely

p(λ) = det

[
λ− 2 −3
−3 λ− 2

]
= (λ− 2)2 − 9

which has roots λ = 5,−1.

Thus, after a rotation to new coordinates (X, Y ) given by diago-
nalizing the second derivative matrix S, the quadratic function

f =
1

2

[
x y

]
S

[
x
y

]
+ 16

will take the form f(X, Y ) = 1
2
(5X2 − Y 2) + 16, so f clearly has

a saddle point at the origin.

One can also see that f has a saddle point by direct inspection.
Note that if x = 0, then f(0, y) = y2 + 16 and similarly f(x, 0) =
x2 + 16. Thus, f is increasing along the x and y axes. However,
in the direction y = −x, we have f(x,−x) = −x2 + 16 and so f
is decreasing along that direction.
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